Existence and bifurcation for some elliptic problems on exterior strip domains
نویسنده
چکیده
We consider the semilinear elliptic problem −Δu + u = λK(x)up + f (x) in Ω, u > 0 in Ω, u ∈ H 0 (Ω), where λ ≥ 0, N ≥ 3, 1 < p < (N + 2)/(N − 2), and Ω is an exterior strip domain in RN . Under some suitable conditions on K(x) and f (x), we show that there exists a positive constant λ∗ such that the above semilinear elliptic problem has at least two solutions if λ∈ (0,λ∗), a unique positive solution if λ= λ∗ , and no solution if λ > λ∗ . We also obtain some bifurcation results of the solutions at λ= λ∗ .
منابع مشابه
Research Article Eigenvalue Problems and Bifurcation of Nonhomogeneous Semilinear Elliptic Equations in Exterior Strip Domains
We consider the following eigenvalue problems: −Δu+ u = λ( f (u) + h(x)) in Ω, u > 0 in Ω, u ∈H1 0 (Ω), where λ > 0, N =m+ n ≥ 2, n ≥ 1, 0 ∈ ω ⊆ Rm is a smooth bounded domain, S = ω×Rn, D is a smooth bounded domain in RN such that D ⊂⊂ S, Ω = S\ –– D. Under some suitable conditions on f and h, we show that there exists a positive constant λ∗ such that the above-mentioned problems have at least ...
متن کاملExistence, Uniqueness and Multiplicity of Positive Solutions for Some Nonlocal Singular Elliptic Problems
In this article, using the sub-supersolution method and Rabinowitztype global bifurcation theory, we prove some results on existence, uniqueness and multiplicity of positive solutions for some singular nonlocal elliptic problems.
متن کاملBifurcation in a variational problem on a surface with a constraint
We describe a variational problem on a surface under a constraintof geometrical character. Necessary and sufficient conditions for the existence ofbifurcation points are provided. In local coordinates the problem corresponds toa quasilinear elliptic boundary value problem. The problem can be consideredas a physical model for several applications referring to continuum medium andmembranes.
متن کاملBifurcation Problem for Biharmonic Asymptotically Linear Elliptic Equations
In this paper, we investigate the existence of positive solutions for the ellipticequation $Delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $Omega$ of $R^{n}$, $ngeq2$, with Navier boundary conditions. We show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...
متن کاملGlobal bifurcations of concave semipositone problems
We study semilinear elliptic equations on general bounded domains with concave semipositone nonlinearities. We prove the existence of the maximal solutions, and describe the global bifurcation diagrams. When a parameter is small, we obtain the exact global bifurcation diagram. We also discuss the related symmetry breaking bifurcation when the domains have certain symmetries.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2006 شماره
صفحات -
تاریخ انتشار 2006